Tag Archives: industrial gear

China Best Sales WGP Drum Gear Flexible Coupling with Brake Disc for Heavy Industrial Equipment

Product Description

WGP Drum Gear Flexible Coupling With Brake Disc For Heavy Industrial Equipment

Description:
WGP Drum Gear Coupling With Brake Disc has a brake disc, brake disc can rotate speed by controlling the speed to adjust the machine. As shown in figure WGP with brake drum set type gear coupling is divided into I type and II type 2 forms, the only difference is that the brake disc is different.
WGP Drum Gear Coupling With Brake Disc is an improved type of gear coupling, consisting of inner gear and the same number of teeth of the flange half band coupling parts etc..
WGP Drum Gear Coupling With Brake Disc at work, 2 have the relative angular displacement, relative axial sliding periodic internal and external gear tooth surface, will inevitably lead to tooth wear and power consumption, therefore, the gear coupling needs to work in good condition and seal. The toothed coupling has small radial size and large load capacity. It is usually used for shafting transmission under low speed and heavy load conditions. The high accuracy and dynamic balancing gear coupling can be used for high speed transmission.

 

Features:

1. Double drum-shaped tooth structure, can compensate for a larger axis offset,

2. The brake disc is arranged at the passive end of the coupling, the weight of the brake disc and the working brake load and vibration are completely supported by the half coupling, thereby improving the meshing performance of the drum teeth during braking,

3. The maximum braking torque is not restricted by the structural strength of the coupling, safe and reliable,

4. Compact structure, brake disc cooling conditions are good,

5. Plug-in brake disc can be quickly be replaced without removing the device.

Applications:
Metallurgy, mining, lifting and transportation industries, petroleum, chemical, general machinery and other heavy machinery shaft drive.

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

disc coupling

Industry Standards and Guidelines for Disc Couplings

Disc couplings, like other mechanical components, are subject to various industry standards and guidelines that ensure their safe and reliable operation. Some relevant standards include:

  • API Standard 671: This American Petroleum Institute (API) standard provides guidelines for special-purpose couplings for use in petroleum, chemical, and gas industry services. It covers the design, materials, testing, and inspection of couplings, including disc couplings.
  • AGMA Standard 9001: The American Gear Manufacturers Association (AGMA) standard 9001 addresses flexible couplings, including disc couplings, and provides recommendations for their design, installation, and maintenance.
  • ISO 14691: This International Organization for Standardization (ISO) standard covers general-purpose industrial couplings, including disc couplings, and provides guidance on their selection, installation, and operation.

Manufacturers and engineers often refer to these standards and guidelines to ensure that disc couplings are designed, manufactured, and used according to recognized industry practices. Adhering to these standards helps enhance the reliability, safety, and performance of disc couplings in various industrial applications.

disc coupling

Suitability of Disc Couplings for High-Speed Rotation and Critical Alignment

Disc couplings are well-suited for applications involving high-speed rotation and critical alignment due to their unique design and performance characteristics:

  • High-Speed Rotation: Disc couplings can handle high rotational speeds while maintaining their balance and integrity. Their lightweight and compact design minimize the effects of centrifugal forces, making them suitable for high-speed applications.
  • Critical Alignment: Disc couplings offer excellent flexibility and angular misalignment compensation. They can accommodate axial, radial, and angular misalignments, making them suitable for applications where maintaining precise alignment is crucial.
  • Torsional Stiffness: Disc couplings can provide a balance between flexibility and torsional stiffness, allowing them to transmit torque accurately even in critical alignment scenarios.
  • High Torque Capacity: Many disc couplings are designed to handle high torque loads, making them suitable for applications with demanding torque requirements.
  • Resonance Damping: The flexible nature of disc couplings can help dampen vibrations and reduce the risk of resonance, which is important in high-speed applications.

When selecting a disc coupling for high-speed rotation and critical alignment, it’s essential to consider factors such as torque requirements, speed range, misalignment compensation, space limitations, and dynamic behavior to ensure optimal performance and reliability in the specific application.

disc coupling

Disc Couplings: Function and Application in Mechanical Systems

A disc coupling is a type of flexible coupling used in mechanical systems to connect two shafts while allowing for angular misalignment, axial movement, and some degree of torsional flexibility. It consists of two hubs with flexible metallic discs, known as diaphragms, positioned between them.

Disc couplings are commonly utilized in various industrial applications where precise power transmission, reliability, and flexibility are essential. Some key features and applications of disc couplings include:

  • High Torque Transmission: Disc couplings are designed to transmit high torque loads between shafts while maintaining shaft alignment. The flexible diaphragms can accommodate misalignments and prevent torque overloads on connected equipment.
  • Angular Misalignment Compensation: The design of disc couplings allows them to handle angular misalignment between shafts, which can occur due to manufacturing tolerances or dynamic conditions.
  • Axial Movement Absorption: Disc couplings can absorb limited axial movement along the shaft axis without transferring excessive forces to the connected components.
  • Torsional Flexibility: The metallic diaphragms of disc couplings offer torsional flexibility, enabling them to dampen vibrations and shock loads. This helps protect connected equipment from damage and increases overall system reliability.
  • Precision Machinery: Disc couplings are often employed in precision machinery and equipment, such as CNC machines, robotics, pumps, compressors, and servo systems. These applications require accurate motion control and reliable power transmission.
  • High-Speed Applications: Due to their balanced design and ability to maintain precise alignment, disc couplings are suitable for high-speed applications where even a small misalignment can lead to vibration and wear.

The ability of disc couplings to provide both flexibility and precise torque transmission makes them a preferred choice in various industries, including manufacturing, aerospace, automotive, and more. Proper selection, installation, and maintenance of disc couplings contribute to improved machinery performance, reduced downtime, and extended component life.

China Best Sales WGP Drum Gear Flexible Coupling with Brake Disc for Heavy Industrial Equipment  China Best Sales WGP Drum Gear Flexible Coupling with Brake Disc for Heavy Industrial Equipment
editor by CX 2024-01-16

China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling

Product Description

Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer PIN MH Rigid NM Jaw Gear   transmission industrial gearbox manufacture parts  pric F Flexible Coupling

YOXz is a coincidence machine with moving wheel which is in the output point of the coincidence machine and is connected with elastic axle connecting machine (plum CHINAMFG type elastic axle connecting machine or elastic pillar axle-connecting machine or even the axle-connecting machine designated by customers). Usually there are 3 connection types.

YOXz is inner wheel driver which has tight structure and the smallest axle size.The fittings of YOXz have a wide usage, simple structure and the size of it has basically be unified in the trade.The connection style of YOXz is that the axle size of it is longer but it is unnecessary to move the electromotive machine and decelerating machine. Only demolish the weak pillar and connected spiral bolt can unload the coincidence machine so it is extreme convenient. Customer must offer the size of electromotive machine axle (d1 L1) and decelerating machine axle (d2 L2). The wheel size (Dz Lz C) in the table is just for reference, the actual size is decided by customers.

 

Main Features

1. Applies to flexible drive shaft ,allowing a larger axial radial displacement and displacement.

2.Has a simple structure,easy maintenance .

3.Disassembly easy

4.low noise

5.Transmission efficiency loss,long useful working life.

 

fluid coupling

Handling Overloads and Stall Conditions in Fluid Couplings

A fluid coupling is designed to handle overloads and stall conditions in power transmission systems. When an overload or stall occurs, the fluid coupling utilizes its unique operating principle to protect the drivetrain and the connected machinery:

  • Slip Feature: One of the key characteristics of a fluid coupling is its ability to slip at high torque loads. When an overload situation arises, the fluid coupling allows some relative motion between the input and output sides, known as slip. This slip absorbs the excess torque and prevents it from being transferred to the driven equipment, effectively protecting it from damage.
  • Fluid Circulation: During normal operation, the fluid inside the coupling circulates smoothly between the impeller and turbine, transmitting torque with minimal losses. However, when an overload or stall condition occurs, the fluid circulation may become turbulent, generating heat in the process. This heat dissipation helps in absorbing and dissipating the excess energy, preventing the transmission system from experiencing sudden stress.
  • Automatic Reconnection: After an overload or stall condition, once the excess torque is dissipated through slip and heat, the fluid coupling automatically reconnects the input and output sides, resuming the power transmission. This automatic reconnection ensures that the system returns to normal operation once the overload situation is resolved.
  • Sturdy Construction: Fluid couplings are designed with robust and durable materials to withstand high torque and thermal stresses during overload conditions. The strong construction ensures that the fluid coupling remains reliable and operational even after multiple overload events.

Overall, a fluid coupling’s ability to handle overloads and stall conditions makes it a reliable and essential component in various industrial applications. By providing overload protection and slip characteristics, fluid couplings help prevent costly damage to equipment, increase operational safety, and contribute to the longevity of the entire power transmission system.

fluid coupling

Fluid Couplings in Pumps and Compressors

Yes, fluid couplings can be effectively used in pumps and compressors to optimize their operation and improve overall efficiency. Here’s how fluid couplings are beneficial in these applications:

1. Smooth Starting: Fluid couplings provide a soft-start capability, which is particularly advantageous for pumps and compressors. During startup, the fluid coupling allows the pump or compressor to gradually reach the desired operating speed, reducing mechanical stress on the equipment and preventing sudden torque spikes.

2. Overload Protection: Pumps and compressors may experience sudden changes in load due to variations in fluid demand or system pressure. A fluid coupling acts as a torque limiter and protects the connected equipment from damage during such overload conditions. It slips and absorbs excess torque, preventing mechanical failures and downtime.

3. Torque Control: Fluid couplings enable precise control over the torque transmitted to the pump or compressor. This feature allows operators to adjust the output speed and torque to match the specific requirements of the application, ensuring optimal performance and energy efficiency.

4. Vibration Damping: The inherent damping properties of fluid couplings help in reducing vibrations in pump and compressor systems. This not only extends the life of the mechanical components but also enhances the reliability of the entire system.

5. Energy Efficiency: By eliminating the need for direct mechanical connections and providing smooth acceleration, fluid couplings contribute to energy savings in pumps and compressors. The reduction in shock loads and vibrations leads to lower energy consumption and improved overall efficiency.

6. Heat Dissipation: Continuous operations in pumps and compressors can generate heat, potentially affecting the equipment’s performance. Fluid couplings have the ability to absorb and dissipate heat, maintaining proper operating temperatures and ensuring consistent performance.

7. System Protection: In addition to overload protection, fluid couplings also protect pumps and compressors from torque fluctuations, which can occur during transient conditions. This protection prevents mechanical damage and enhances the longevity of the equipment.

Overall, fluid couplings offer several advantages in pump and compressor applications, including smooth starting, overload protection, torque control, vibration damping, energy efficiency, heat dissipation, and system protection. These benefits make fluid couplings a valuable component in optimizing the performance and reliability of pumps and compressors in various industrial settings.

fluid coupling

Can Fluid Couplings be Retrofitted into Existing Machinery?

Yes, fluid couplings can be retrofitted into existing machinery in many cases. Retrofitting is a process of adding new components or technologies to existing equipment to improve its performance or functionality. Fluid couplings are versatile and can often be integrated into various industrial machines and power transmission systems.

The process of retrofitting a fluid coupling involves several steps:

  1. Evaluation: Before retrofitting, a thorough evaluation of the existing machinery is necessary. Engineers need to assess the machine’s design, power requirements, and other relevant factors to determine the suitability of a fluid coupling.
  2. Compatibility: Fluid couplings should be compatible with the existing machine’s shaft, motor, and driven equipment. If necessary, modifications may be required to ensure a proper fit.
  3. Installation: The installation process involves mounting the fluid coupling onto the machine’s shaft and connecting it to the motor and driven equipment.
  4. Alignment: Precise alignment of the fluid coupling is crucial for optimal performance and to avoid issues such as vibration and wear.
  5. Testing: After installation, the retrofitted system undergoes testing to ensure that it functions as intended and meets the desired performance goals.

Retrofitting fluid couplings can offer various benefits, including:

  • Improved Energy Efficiency: Fluid couplings can enhance energy efficiency by reducing power losses and improving the overall power transmission system’s efficiency.
  • Enhanced Protection: Fluid couplings provide protection against shocks and overloads, safeguarding the machinery and its components from damage.
  • Reduced Maintenance: The smooth start and reduced stress on the machine during operation can lead to lower maintenance requirements and longer equipment lifespan.
  • Soft Start: Fluid couplings offer a soft start, which reduces the mechanical stress on the machine during startup, extending its life and minimizing downtime.

However, it is essential to involve qualified engineers and technicians for the retrofitting process to ensure proper installation, alignment, and performance of the fluid coupling in the existing machinery.

China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling  China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling
editor by CX 2023-10-09