Tag Archives: stainless steel chain

China wholesaler Propeller Shaft Coupling Vibrator for Magnetic Bracelet Water Couplings Flexible Chain Fluid Flange Stainless Steel Spacer

Product Description

     Propeller Shaft Coupling Vibrator for Magnetic Bracelet Water Couplings Flexible Chain Fluid Flange Stainless Steel Spacer

Application of Propeller Shaft Coupling

A propeller shaft coupling is a mechanical device that connects 2 shafts together. It is used to transmit torque and rotation between the shafts. Propeller shaft couplings are used in a variety of applications, including:

  • Marine. Propeller shaft couplings are used in marine applications to connect the engine to the propeller.
  • Industrial. Propeller shaft couplings are used in industrial applications to connect different pieces of equipment together.
  • Agricultural. Propeller shaft couplings are used in agricultural applications to connect the engine to the driveline.
  • Off-highway. Propeller shaft couplings are used in off-highway applications to connect the engine to the driveline.
  • Other. Propeller shaft couplings are used in a variety of other applications, such as wind turbines and conveyor belts.

There are a variety of different types of propeller shaft couplings, each with its own advantages and disadvantages. The type of coupling that is best for a particular application will depend on the specific requirements of that application.

Here are some of the advantages of using propeller shaft couplings:

  • They can transmit high torque and rotation.
  • They are durable and can withstand a variety of harsh conditions.
  • They are easy to install and maintain.
  • They are available in a variety of sizes and styles to fit different applications.

Here are some of the disadvantages of using propeller shaft couplings:

  • They can be expensive.
  • They can be difficult to align properly.
  • They can wear out over time.

Overall, propeller shaft couplings are a versatile and reliable way to connect 2 shafts together. They are used in a variety of applications and can be a valuable asset in any fleet.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Contribution of Fluid Coupling to the Longevity of Connected Equipment

A fluid coupling plays a crucial role in enhancing the longevity and protecting the connected equipment by providing the following benefits:

  • Shock Load Damping: When the equipment starts or stops, there can be sudden changes in torque, resulting in shock loads. The fluid coupling absorbs and dampens these shock loads, reducing stress and wear on the connected equipment.
  • Torsional Vibration Damping: Torsional vibrations can occur during the operation of the connected equipment, which can be damaging over time. The fluid coupling acts as a torsional damper, reducing these vibrations and preventing potential fatigue failure in the equipment.
  • Overload Protection: In case of sudden overloads or jamming of the connected equipment, the fluid coupling can slip and decouple the load, protecting both the equipment and the driving motor from excessive stress and damage.
  • Smooth Startup: During startup, the fluid coupling allows a gradual increase in torque, enabling a smooth and controlled acceleration of the connected equipment. This eliminates sudden jerks and reduces mechanical stress during the startup phase.
  • Load Distribution: The fluid coupling distributes the load evenly across the connected equipment, minimizing wear and tear on specific components and extending the overall lifespan of the machinery.
  • Reduced Maintenance: By reducing shock loads and vibrations, the fluid coupling helps decrease the frequency of maintenance and repairs required for the connected equipment, resulting in cost savings and improved uptime.
  • Energy Efficiency: The fluid coupling allows for efficient power transmission by reducing losses during startup and load changes. This, in turn, helps in lowering the overall energy consumption of the system and contributes to equipment longevity.
  • Contamination Prevention: The fluid coupling encapsulates the driving and driven components, providing a barrier that helps prevent contaminants such as dust, dirt, and moisture from entering the equipment’s internal components. This protection can extend the life of bearings and other sensitive parts.

Overall, a fluid coupling acts as a protective intermediary between the driving motor and the connected equipment, enhancing the system’s reliability, efficiency, and longevity by mitigating the effects of shocks, vibrations, and overloads.

fluid coupling

Safety Features in Modern Fluid Coupling Designs

Modern fluid coupling designs incorporate various safety features to ensure the reliable and secure operation of the equipment. Here are some of the key safety features commonly found in modern fluid couplings:

1. Overload Protection: One of the primary safety features in modern fluid couplings is overload protection. In the event of an abrupt increase in load or torque, the fluid coupling slips, absorbing the excess torque and preventing damage to the connected equipment. This feature safeguards against mechanical failures and protects the machinery.

2. Torque Limiting: Fluid couplings are designed with torque limiting capabilities, which allow them to control the maximum torque transmitted to the driven equipment. By setting the torque limit within a safe operating range, the fluid coupling prevents excessive stresses on the system, ensuring longevity and reliability.

3. Automatic Overheat Protection: Some fluid couplings are equipped with automatic overheat protection mechanisms. If the fluid coupling’s operating temperature exceeds a predefined threshold, the protection system disengages the coupling temporarily until the temperature returns to a safe level. This prevents damage due to overheating and enhances safety.

4. Backstop or Holdback Device: In certain applications where reverse rotation is a concern, fluid couplings may include a backstop or holdback device. This feature prevents the driven equipment from rotating in the opposite direction, enhancing safety during sudden stops or reversals.

5. Fail-Safe Operation: Many modern fluid couplings are designed to operate in a fail-safe manner. In the event of any malfunction or failure, the coupling defaults to a safe mode, allowing the equipment to continue operating at reduced capacity or gradually shut down, avoiding catastrophic failures.

6. Seal Protection: Proper sealing is crucial for fluid couplings, especially in harsh environments. Modern designs often include advanced seal protection features to prevent oil leakage and contamination, ensuring environmental safety and reducing maintenance requirements.

7. Low Noise and Vibration: Reduced noise and vibration levels in fluid couplings contribute to operator safety and comfort. The damping properties of the fluid coupling help minimize vibrations, creating a quieter and more stable working environment.

8. Emergency Stop Capability: Some fluid couplings may have emergency stop provisions to quickly disengage the coupling in critical situations. This feature allows for rapid shutdowns in emergencies, preventing accidents and protecting personnel.

9. Condition Monitoring: Advanced fluid coupling designs may include condition monitoring capabilities. This allows operators to monitor the coupling’s performance, temperature, and other parameters in real-time, facilitating predictive maintenance and avoiding unexpected failures.

Overall, the incorporation of these safety features in modern fluid coupling designs ensures the protection of machinery, operators, and the surrounding environment. These safety measures enhance the reliability, efficiency, and longevity of equipment, making fluid couplings a safe and valuable choice for power transmission in various industrial applications.

fluid coupling

Key Components of a Fluid Coupling and Their Functions

A fluid coupling consists of several essential components that work together to transfer torque and facilitate smooth power transmission. The key components and their functions are as follows:

  • Impeller: The impeller is the primary input element of the fluid coupling. It is directly connected to the driving shaft and rotates with it. The impeller’s function is to churn and circulate the fluid inside the coupling, creating a flow that generates a hydrodynamic torque.
  • Runner/Turbine: The runner, also known as the turbine, is the output element of the fluid coupling. It is connected to the driven shaft and rotates with it. As the fluid from the impeller flows onto the runner, it causes the runner to rotate and transmit torque to the driven load.
  • Fluid: The fluid, typically hydraulic oil, is the medium that transmits torque from the impeller to the runner. It fills the space between the impeller and the runner and allows the torque transfer to take place through hydrodynamic action.
  • Filler Plug: The filler plug is used to add or drain the fluid from the fluid coupling. It allows for the adjustment of fluid levels, which can influence the coupling’s performance characteristics.
  • Seal Ring: The seal ring prevents the fluid from leaking out of the fluid coupling and ensures that the coupling operates with maximum efficiency and minimal losses.
  • Bearing: The bearing provides support for the input and output shafts, allowing them to rotate smoothly. Bearings are critical for maintaining alignment and reducing friction within the fluid coupling.

These key components work together to create a hydrodynamic torque transfer, enabling the fluid coupling to smoothly transmit power and torque from the driving shaft to the driven shaft without any physical contact between the two shafts.

China wholesaler Propeller Shaft Coupling Vibrator for Magnetic Bracelet Water Couplings Flexible Chain Fluid Flange Stainless Steel Spacer  China wholesaler Propeller Shaft Coupling Vibrator for Magnetic Bracelet Water Couplings Flexible Chain Fluid Flange Stainless Steel Spacer
editor by CX 2024-02-27

China Professional Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling gear coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Can Gear Couplings Accommodate High Torque and High-Speed Applications?

Yes, gear couplings are well-suited for high torque and high-speed applications in various industries. They are designed to transmit large amounts of torque efficiently while providing torsional rigidity and compensating for misalignment between shafts. The robust construction and unique toothed gear design of gear couplings allow them to handle heavy-duty and demanding operating conditions.

The key factors that enable gear couplings to accommodate high torque and high-speed applications are:

  • Sturdy Construction: Gear couplings are typically made from high-quality materials such as steel or alloy, ensuring strength, durability, and the ability to withstand substantial torque loads without failure.
  • High Torque Capacity: The toothed gear design of gear couplings allows for a large surface area of contact between the teeth, distributing torque evenly and effectively. This design significantly enhances the coupling’s torque-carrying capacity.
  • Torsional Rigidity: Gear couplings offer excellent torsional rigidity, meaning they can resist angular deflection and maintain accurate torque transmission even under heavy loads and at high speeds.
  • High-Speed Balancing: Gear couplings are precisely balanced during manufacturing to minimize vibration and prevent harmful effects on connected equipment, even when operating at high speeds.
  • Misalignment Compensation: Gear couplings can accommodate both angular and parallel misalignment between shafts, which is common in high-speed applications where thermal expansion and dynamic forces come into play.
  • Lubrication: Proper lubrication is crucial for reducing friction and wear in gear couplings, especially in high-speed applications where heat generation is higher. Lubrication also helps dissipate heat and ensures smooth operation.

Due to their ability to handle high torque and high speeds, gear couplings are commonly used in various industries, including steel, mining, power generation, paper mills, and more. However, it is essential to select the right size and type of gear coupling based on the specific application requirements and operating conditions to ensure optimal performance and reliability.

China Professional Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  gear couplingChina Professional Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  gear coupling
editor by CX 2024-02-21

China wholesaler Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider

Product Description

Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

elastomeric coupling

Elastomeric Couplings and Handling Torque Spikes and Sudden Load Changes

Elastomeric couplings are designed to handle torque spikes and sudden changes in load, thanks to the inherent flexibility and damping properties of the elastomeric material. Here’s how they manage such scenarios:

1. Damping Effect:

When a sudden increase in torque or load occurs in the machinery, the elastomeric coupling’s flexible element acts as a buffer, absorbing and dissipating the excess energy. This damping effect helps prevent the transmission of shock loads to the connected equipment, reducing the risk of damage.

2. Torsional Compliance:

Elastomeric couplings have a certain level of torsional compliance, which allows them to tolerate brief torque spikes without transmitting excessive forces to the connected shafts. This torsional compliance is essential in applications where sudden load changes are common.

3. Misalignment Compensation:

Elastomeric couplings can accommodate some degree of misalignment between the shafts. When torque spikes or sudden loads lead to minor misalignments, the coupling can flex and compensate for these changes, reducing the stress on the machinery.

4. Vibration Absorption:

If torque spikes or sudden loads result in torsional vibrations, the elastomeric material can absorb and dampen these vibrations, preventing them from propagating through the system and causing additional damage.

5. Material Selection:

The selection of appropriate elastomeric materials and coupling design factors in the anticipated torque and load requirements. Couplings can be designed to handle specific torque spikes and loads based on the elastomer’s hardness and properties.

Despite their ability to handle torque spikes and sudden load changes, it is essential to consider the specific application requirements when choosing an elastomeric coupling. Factors such as the magnitude and frequency of torque spikes, load characteristics, and operating conditions must be taken into account to ensure the coupling’s compatibility and reliability.

Properly selected and maintained elastomeric couplings provide effective torque transmission and help protect connected equipment from the impact of sudden changes in load, contributing to the overall efficiency and longevity of the machinery.

elastomeric coupling

Safety Considerations When Using Elastomeric Couplings in High-Speed or Heavy-Load Applications

When using elastomeric couplings in high-speed or heavy-load applications, there are several important safety considerations to ensure reliable and safe operation. These considerations help prevent potential hazards and mitigate risks associated with the coupling’s performance under demanding conditions:

1. Coupling Selection:

Choose an elastomeric coupling specifically designed and rated for high-speed and heavy-load applications. Ensure the coupling’s torque and speed ratings exceed the maximum requirements of your application to prevent overloading.

2. Dynamic Balancing:

For high-speed applications, ensure that the coupling and the connected equipment are dynamically balanced. Imbalances can lead to significant vibrations, which may cause premature wear, fatigue, and ultimately failure of the coupling or connected machinery.

3. Misalignment Limits:

Monitor and control misalignment between shafts within the coupling’s allowable limits. Excessive misalignment can cause additional stresses on the elastomeric material and reduce coupling life.

4. Temperature Monitoring:

Monitor the operating temperature of the coupling, especially during high-speed or high-load operations. Elevated temperatures can accelerate elastomer degradation and affect the coupling’s flexibility and damping characteristics.

5. Regular Inspection:

Perform regular visual inspections of the coupling to check for signs of wear, damage, or misalignment. Promptly address any issues to prevent potential safety risks.

6. Avoid Shock Loads:

Avoid subjecting the coupling to sudden shock loads, especially in high-load applications. Sudden shock loads can lead to excessive stress on the elastomer, causing it to fail prematurely.

7. Load Capacity:

Ensure that the coupling’s load capacity matches or exceeds the maximum loads expected in the application. Operating the coupling near its maximum capacity for prolonged periods may decrease its lifespan.

8. Installation Quality:

Ensure that the elastomeric coupling is installed correctly following the manufacturer’s guidelines. Proper installation prevents misalignment and ensures the coupling can handle the anticipated loads and speeds safely.

By carefully considering these safety measures and adhering to manufacturer recommendations, you can use elastomeric couplings effectively and safely in high-speed or heavy-load applications. Regular maintenance, monitoring, and adherence to safety guidelines will help prevent accidents, minimize downtime, and ensure the longevity and reliability of your coupling system.

elastomeric coupling

Maintenance Requirements for Elastomeric Couplings to Ensure Optimal Performance and Longevity

Elastomeric couplings are known for their relatively low maintenance requirements, but regular inspection and care are essential to ensure their optimal performance and longevity. Here are the key maintenance practices for elastomeric couplings:

1. Visual Inspection:

Regularly inspect the coupling for signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric element and any visible signs of deterioration.

2. Lubrication:

Most elastomeric couplings do not require lubrication, as the elastomeric material acts as a self-lubricating element. However, check with the manufacturer’s recommendations to ensure your specific coupling type does not require any lubrication.

3. Misalignment Check:

Monitor the misalignment between the connected shafts to ensure it stays within the coupling’s allowable limits. Excessive misalignment can lead to premature wear and reduced coupling life.

4. Temperature Limits:

Keep the operating temperature within the specified limits for the elastomeric material. Extreme temperatures can degrade the elastomer and affect its flexibility and performance.

5. Environmental Protection:

Protect the coupling from exposure to chemicals, abrasive particles, and other harsh environmental elements that may accelerate wear and deterioration of the elastomeric material.

6. Regular Maintenance Schedule:

Follow a maintenance schedule recommended by the manufacturer or based on the specific operating conditions of your application. Regularly inspect and replace elastomeric couplings as needed to prevent unexpected failures.

7. Proper Installation:

Ensure the coupling is correctly installed following the manufacturer’s guidelines. Proper installation helps maintain the coupling’s alignment and prevents undue stresses on the elastomeric element.

8. Load Monitoring:

Regularly monitor the load and torque requirements of your application. Avoid overloading the coupling beyond its specified capacity, as this can lead to premature failure.

By following these maintenance practices, you can extend the life of your elastomeric couplings and ensure they continue to provide reliable and efficient power transmission in your industrial system. Remember that each application may have specific maintenance needs, so always refer to the manufacturer’s instructions and consult with experts if needed.

China wholesaler Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider  China wholesaler Mechanical Coupling Shaft Elastomeric Stainless Steel Clamp Industrial Servo Flange Flexible Square Shaft Industrial Hydraulic Fluid Drive Roller Chain Spider
editor by CX 2024-02-19

China supplier Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling gear coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

What Is a Gear Coupling and How Does It Work?

A gear coupling is a type of mechanical coupling that connects two shafts together to transmit torque and rotational motion between them. It consists of two gear-like hubs with external teeth that mesh together and transmit torque via the engagement of the teeth. The gear teeth on the hubs allow for high torque transmission and provide flexibility to accommodate misalignments between the shafts.

The working principle of a gear coupling can be summarized as follows:

1. Gear Hubs: A gear coupling consists of two hubs, each attached to the respective shafts that need to be connected. The hubs have external gear teeth that mesh together when the coupling is assembled.

2. Gear Teeth Engagement: When the two gear hubs are brought together during installation, the gear teeth on one hub mesh with the corresponding teeth on the other hub. This meshing creates a strong mechanical connection between the two shafts.

3. Torque Transmission: As the connected shafts rotate, the gear teeth engage and transmit torque from one shaft to the other. The gear coupling can handle high torque loads, making it suitable for heavy-duty applications.

4. Misalignment Compensation: One of the key advantages of a gear coupling is its ability to accommodate various types of misalignment, including angular, parallel, and axial misalignments between the connected shafts. This misalignment compensation helps reduce stress on the connected equipment and prevents premature wear.

5. Lubrication: Gear couplings may require lubrication to reduce friction between the gear teeth and ensure smooth operation. Proper lubrication helps improve the efficiency and longevity of the coupling.

Gear couplings are commonly used in various industrial applications, such as power generation, steel mills, mining, and heavy machinery. They offer high torque capacity, excellent misalignment accommodation, and reliability, making them a preferred choice for transmitting power in demanding environments.

China supplier Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  gear couplingChina supplier Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  gear coupling
editor by CX 2024-02-18

China manufacturer Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric Coupling

Product Description

  Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric coupling

A fluid coupling is a torque converter used in mechanical power transmission systems to transmit torque from 1 rotating shaft to another. It consists of 2 halves, the impeller, and the runner, which are placed in a housing filled with a hydraulic fluid such as oil or water.

When one-half of the fluid coupling is rotated, it creates a fluid flow within the housing, which in turn causes the other half to rotate. The fluid coupling uses fluid dynamics principles to transmit torque between the 2 halves, with the amount of torque being proportional to the speed difference between the 2 shafts.

One of the key advantages of a fluid coupling is its ability to provide a smooth and gradual torque transfer between the 2 shafts, without any mechanical connection. This can help to reduce wear and tear on the equipment and improve overall system efficiency.

Fluid couplings are commonly used in various industrial applications, including mining, construction, and marine equipment. They are also used in automotive transmissions, where they can help provide a smooth and efficient torque transfer between the engine and the wheels.

Overall, a fluid coupling provides a reliable and efficient way to transmit torque between 2 rotating shafts, without any mechanical connection. With their ability to provide a smooth and gradual torque transfer, they are a popular choice for a wide range of industrial and automotive applications.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

elastomeric coupling

Differences Between Elastomeric Couplings Made from Different Materials

Elastomeric couplings can be manufactured using various materials, each offering unique properties that influence the coupling’s performance in different applications. Here are the key differences between couplings made from rubber, polyurethane, and silicone:

1. Rubber Elastomers:

Rubber elastomers are commonly used in elastomeric couplings due to their excellent resilience, flexibility, and damping properties. They can handle a wide range of temperatures and are resistant to abrasion and wear. Rubber couplings are ideal for general-purpose applications where moderate torque and misalignment compensation are required.

2. Polyurethane Elastomers:

Polyurethane elastomers provide higher strength and load-bearing capabilities compared to rubber. They have better resistance to oils, chemicals, and harsh environments. Polyurethane couplings are suitable for applications involving higher torque, shock loads, and exposure to aggressive substances.

3. Silicone Elastomers:

Silicone elastomers offer superior thermal stability and can withstand extreme temperature variations. They exhibit excellent electrical insulation properties and are resistant to aging and weathering. Silicone couplings are often used in applications that require high-temperature resistance and electrical isolation.

4. Damping and Resilience:

Rubber generally provides better damping properties, making it effective in reducing vibrations and noise. Polyurethane offers higher resilience, which can be advantageous in applications with frequent torque spikes and shock loads. Silicone combines good damping with high-temperature resistance.

5. Environmental Compatibility:

Polyurethane and silicone couplings tend to have better resistance to chemicals, oils, and extreme temperatures, making them suitable for demanding environments. Rubber couplings may have limitations in certain aggressive chemical environments.

6. Cost and Performance Balance:

The choice of material also affects the cost of the coupling. Rubber is generally more cost-effective, while polyurethane and silicone may be more expensive but offer specific performance advantages in certain applications.

When selecting an elastomeric coupling, it is crucial to consider the specific requirements of the application, such as torque, speed, misalignment, temperature range, and chemical exposure. The material choice should align with the demands of the operating conditions to ensure optimal coupling performance and longevity.

elastomeric coupling

Standard Specifications and Industry Norms for Elastomeric Couplings

Yes, there are standard specifications and industry norms that govern the design, manufacturing, and performance of elastomeric couplings. These standards ensure that elastomeric couplings meet specific criteria for quality, reliability, and safety. Some of the widely recognized standards and norms for elastomeric couplings include:

1. American National Standards Institute (ANSI):

ANSI provides standards and guidelines for elastomeric couplings used in various industrial applications. ANSI standards cover design considerations, dimensions, materials, torque ratings, and performance testing for elastomeric couplings.

2. International Organization for Standardization (ISO):

ISO develops international standards for elastomeric couplings, ensuring consistency and interoperability across different regions and industries. ISO standards cover coupling performance, dimensions, and testing methods.

3. American Society of Mechanical Engineers (ASME):

ASME standards include guidelines for elastomeric couplings, providing information on design, installation, maintenance, and inspection practices to ensure safe and reliable operation.

4. American Gear Manufacturers Association (AGMA):

AGMA publishes standards related to elastomeric couplings used in power transmission systems. These standards cover coupling design, selection, application, and maintenance guidelines.

5. European Committee for Standardization (CEN):

CEN develops European standards for elastomeric couplings to promote uniformity and compliance across European countries.

Manufacturers often use these standards as a reference when designing and testing elastomeric couplings. Compliance with these standards helps ensure that the couplings meet minimum quality and performance requirements. Additionally, many industries have specific regulations and norms related to safety, which elastomeric couplings must adhere to when used in their applications.

When selecting an elastomeric coupling, it is essential to verify if it complies with the relevant standards and industry norms to guarantee its suitability and safety for your specific application. Manufacturers typically provide documentation stating the compliance of their couplings with the applicable standards.

elastomeric coupling

Advantages of Using Elastomeric Couplings in Industrial Applications

Elastomeric couplings offer several advantages that make them well-suited for various industrial applications. These advantages stem from their flexible design and the use of elastomeric materials like rubber or polyurethane. Below are the key benefits of using elastomeric couplings:

1. Misalignment Compensation:

Elastomeric couplings can tolerate and compensate for angular, parallel, and axial misalignments between connected shafts. This ability to handle misalignment reduces stress on equipment and extends the lifespan of both the coupling and the connected machinery.

2. Vibration and Shock Absorption:

The elastomeric material in the coupling acts as a natural vibration isolator, absorbing shocks and dampening vibrations. This feature is essential for reducing noise, protecting sensitive components, and enhancing the overall smoothness of operation in industrial systems.

3. No Lubrication Required:

Elastomeric couplings do not need regular lubrication, making them low-maintenance solutions for many industrial applications. This reduces the time and effort spent on maintenance tasks and minimizes the risk of contamination or leakage in certain environments.

4. Cost-Effectiveness:

Compared to some other types of couplings, elastomeric couplings are generally more cost-effective. Their simple construction and use of elastomeric materials make them affordable choices for power transmission in various industries.

5. Electrically Insulating:

Elastomeric couplings are electrically insulating, which can be advantageous in applications where electrical isolation is necessary to prevent current flow between shafts or connected equipment.

6. Fail-Safe Design:

In the event of elastomeric material failure, elastomeric couplings have a fail-safe design that allows them to continue transmitting torque, albeit with some reduction in performance. This feature ensures continued operation and prevents sudden catastrophic failures.

7. Easy Installation:

Elastomeric couplings are relatively simple to install, saving time and effort during the setup of industrial machinery.

8. Diverse Industrial Applications:

Elastomeric couplings find use in various industrial applications, including pumps, compressors, conveyor systems, machine tools, blowers, fans, and more.

Due to their ability to handle misalignment, provide vibration dampening, and require minimal maintenance, elastomeric couplings are widely utilized in industrial settings where reliability, efficiency, and cost-effectiveness are critical considerations.

China manufacturer Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric Coupling  China manufacturer Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric Coupling
editor by CX 2024-02-13

China Professional Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

 

fluid coupling

Impact of Fluid Coupling on the Overall Reliability of a Power Transmission System

A fluid coupling can significantly contribute to the overall reliability of a power transmission system in various ways:

  • Smooth Power Transmission: Fluid couplings facilitate smooth power transmission between the driving and driven components, minimizing shocks and vibrations during startup and operation. This reduces the risk of sudden failures or damages to connected equipment.
  • Overload Protection: Fluid couplings offer inherent overload protection by allowing controlled slip during sudden load changes or overloads. This protects the system from excessive stresses and prevents damage to the motor and driven machinery.
  • Reduced Mechanical Wear: The smooth operation of fluid couplings reduces mechanical wear on connected components, such as gearboxes, belts, and chains. This results in longer service life and decreased maintenance requirements.
  • Increased Equipment Life: By reducing stress and wear on the entire power transmission system, fluid couplings can extend the service life of motors, gearboxes, and other components. This enhances the overall reliability of the system over an extended period.
  • Enhanced System Safety: The ability of fluid couplings to protect against shock loads and overloads enhances the safety of personnel working with or near the machinery. It prevents sudden and unpredictable movements, reducing the risk of accidents and injuries.
  • Stable Performance: Fluid couplings maintain a constant speed ratio between the driving and driven shafts, ensuring stable and predictable performance of the power transmission system. This predictability aids in maintaining process stability and efficiency.

Incorporating a properly sized and selected fluid coupling into a power transmission system can improve its reliability, reduce downtime, and prevent costly breakdowns. Regular maintenance and monitoring of the fluid coupling also play a crucial role in ensuring long-term reliability and trouble-free operation.

fluid coupling

Contribution of Fluid Coupling to the Overall Efficiency of a Mechanical System

A fluid coupling plays a crucial role in improving the overall efficiency of a mechanical system, especially in applications where smooth power transmission, soft-starting, and torque control are essential. Here’s how a fluid coupling contributes to system efficiency:

1. Smooth Power Transmission:

Fluid couplings provide a smooth and gradual transfer of power from the driving to the driven machinery. The absence of direct mechanical contact between the input and output shafts reduces shock loads and vibrations, leading to less wear and tear on the connected equipment. This smooth power transmission results in increased system efficiency and reduced downtime.

2. Soft-Start Capability:

Fluid couplings offer soft-starting functionality, which is particularly beneficial for high-inertia or heavy-load applications. During startup, the fluid coupling allows the input shaft to gradually accelerate the output shaft, preventing sudden jerks or torque spikes. Soft-starting not only protects the mechanical components but also reduces energy consumption during the starting phase, contributing to overall efficiency.

3. Torque Control:

Fluid couplings enable precise control over the torque transmitted between the driving and driven machinery. By adjusting the fill level or using variable speed couplings, the torque output can be fine-tuned to match the requirements of the application. This feature ensures optimal performance and energy efficiency, especially in systems where torque demand varies during operation.

4. Overload Protection:

In case of sudden overloads or jamming of the driven machinery, the fluid coupling acts as a torque limiter. It will slip and absorb excess torque, protecting the mechanical system from damage. This overload protection not only safeguards the equipment but also contributes to the longevity and efficiency of the entire system.

5. Heat Dissipation:

Fluid couplings can absorb and dissipate heat generated during continuous operations. This heat dissipation capability prevents the system from overheating, ensuring consistent performance and avoiding thermal damage to the machinery. By maintaining proper operating temperatures, the fluid coupling aids in improving overall efficiency.

6. Energy Savings:

With its ability to reduce shock loads and provide smooth acceleration, a fluid coupling can help save energy during starting and stopping cycles. The elimination of mechanical shocks and vibrations reduces energy losses, resulting in higher overall energy efficiency.

In summary, a fluid coupling enhances the overall efficiency of a mechanical system by providing smooth power transmission, soft-start capability, precise torque control, overload protection, heat dissipation, and energy savings. Its contributions to reduced wear and tear, energy-efficient operations, and enhanced equipment lifespan make it a valuable component in various industrial applications.

fluid coupling

Maintenance Practices for Fluid Couplings

Regular maintenance is crucial to keep a fluid coupling in good condition and ensure its longevity. Here are the key maintenance practices:

  1. Fluid Level Checks: Regularly inspect the fluid level in the fluid coupling. Maintain the fluid level within the recommended range specified by the manufacturer.
  2. Fluid Quality: Monitor the quality of the fluid in the fluid coupling. Check for any signs of contamination, degradation, or discoloration. If the fluid shows signs of wear, replace it following the manufacturer’s guidelines.
  3. Fluid Replacement: As part of routine maintenance, consider replacing the fluid periodically, even if there are no visible signs of wear. Fluid replacement intervals may vary based on the application and operating conditions.
  4. Lubrication: Ensure proper lubrication of the fluid coupling components, including bearings and seals, as specified by the manufacturer.
  5. Inspections: Regularly inspect the fluid coupling for any signs of leaks, damage, or unusual noises during operation. Address any issues promptly to prevent further damage.
  6. Alignment: Verify that the fluid coupling is correctly aligned with the connected equipment. Misalignment can lead to premature wear and reduced performance.
  7. Coupling Bolts: Check and tighten the coupling bolts as needed to maintain proper coupling integrity.
  8. Temperature Monitoring: Monitor the operating temperature of the fluid coupling. Elevated temperatures may indicate an issue that needs attention.
  9. Vibration Analysis: Periodically perform vibration analysis to detect any abnormal vibrations that could indicate potential problems.
  10. Manufacturer Guidelines: Follow the maintenance guidelines and recommendations provided by the fluid coupling manufacturer.

By adhering to these maintenance practices, you can extend the life of your fluid coupling, improve its reliability, and minimize the risk of unexpected failures.

China Professional Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  China Professional Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling
editor by CX 2023-11-30